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Jets in PHENIX

Why Jets at PHENIX? (2/ 40)

D.V. Perepelitsa

» Can measure jet modification at: ———

» different collision energies and system sizes.
> lower energies due to softer underlying event.

» different x and Q? (different mixture of quark and gluon
jets).

> Cold nuclear matter effects are important!

» Need p+A (d+Au at RHIC) baselines ASAP.

» No p+Pb LHC run until 2 20127

= Insight into energy loss mechanisms.



The PHENIX detector
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» Run 5 p+p and Cu+Cu @ /sy = 200 GeV.
» Run 8 p+p and d+Au @ /syny = 200 GeV.

» (Run 11 with the VTX: took p+p @ /s = 500 GeV and
taking Au+Au @ /syy = 20) GeV now!)
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The PHENIX detector (4/ 40)

D.V. Perepelitsa

» Advantages:
PHENIX Detector

» High DAQ rate (> 7kHz under good conditions) means
we can take a large Minimum Bias sample and still

trigger.

» Good electromagnetic calorimetry (o ~ 3%/VE).

» Disadvantages:

» |n| < .35. Weak acceptance for (low pr) dijets.

» Lack of hadronic calorimetry (miss neutral hadronic
energy in jet Et).

» Tracking efficiency falls at high pr from conversions
and ghosts.



Basic Cuts o6

D.V. Perepelitsa
» Perform reconstruction at the particle level first.

Basic Cuts

» Goal: balance acceptance (needed for jet
reconstruction) vs. quality considerations.

» PHENIX Drift Chamber, Pad Chambers: select good
charged hadrons and electrons.

» PHENIX Electromagnetic Calorimeter: select good
photons.

» To avoid double-counting, DC acts as a veto on clusters.

» Use EMC clusters and DC tracks as (massless) inputs
to reconstruction. Require pr, ET > 400 MeV/c,
respectively.
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Jet Reconstruction (6/ 40)
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> “A jet is not a physical quantity; it is a legal contract
between theorists and experimentalists”

Al ith
— M. Tannenbaum -~

» An algorithm is a stupid thing that takes in four-vectors
and spits out different four-vectors.

» Have to understand the output and context of
reconstruction algorithms.

» Want observables (Raa, di-jet A¢, quenching) to be
insensitive to choice of algorithm.



Reconstruction Algorithms

» Is it a good algorithm?

» Is the algorithm stable against the addition of small
particles at odd angles (infrared safe) or splitting
(collinear safe)?

> Is it useful in my detector?

» Does the algorithm behave well around holes in the
acceptance?

> |s it sensitive to the underlying event?

» Does the algorithm reconstruct background fluctuations
at jets?

» Does it encode meaningful physics?

» Does the algorithm recover most of the fragmenting
parton’s energy?

» Does the algorithm reconstruct the fragmenting
parton's direction?

Jets in PHENIX
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Algorithms



Jets in PHENIX

Gaussian Filter (8/ 40)
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Gaussian Filter

> Seedless, infrared and collinear safe algorithm with
angular weighting (nucl-ex/0806.1499)

et—max{//dﬁ d¢'pr (', ¢') e ~(an +A¢2)/2U}

> Shape of the filter:

» Optimizes the signal-to-background by focusing on the
core of the jet
» Stabilizes the jet axis in the presence of background

» Additive: good against collective background, holes in
acceptance.



Gaussian Filter example
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Reconstruction Challenges in a Heavy lon (10/ 40)
EnV| ron ment D.V. Perepelitsa

> Jet reconstruction algorithms are originally a HEP idea.

Heavy lon Jets

» The fluctuating, large combinatorial background in
heavy ion collisions adds unique challenges.

> New techniques are needed. Here are the some of the
ones we use at PHENIX.
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Presence of the Underlying Event (11/ 40)

. . . . D.V. Perepelitsa
How does the underlying event influence jet reconstruction?

(And which effects can we correct?)

» Jittering of the jet axis p* (important for di-jet
measurements).
> Low-pr effect.
» Split-jet
» Low-pr and large cone size effect.

Underlying Event

» pr feeding (important for yields, suppression, etc.):
» Event-averaged background subtraction
» (PHENIX Cu+Cu: hep-ph/0802.1188, but not
appropriate for d+Au).
» Unfolding from embedding (PHENIX d+Au).
» Background subtraction on event-by-event basis:
» LHC Pb-Pb iterative subtraction, O. Kodolova et al.,
EPJC (2007) 117,

» Cacciari/Salam Ap + ov/A — L method,
hep-ph/0707.1378, hep-ph/0802.1188.



Jets in PHENIX

Fake Jet Identification and Rejection (1/ 40)
D.V. Perepelitsa
» Fluctuations of the underlying event = can be

reconstructed as low-pp “jet” by your algorithm!
» Solutions:

» Pick a pr cutoff where the fake rate is negligible (e.g.
ATLAS does this at 100 GeV for R=0.4 anti-k jets).

» Different ways to do this: compare to p+p, look at
dijets, etc.

Fake Jets

» Subtract off fake jet yield (very difficult to do properly).
» Look at each jet and cut out the ones that look “fake”
(e.g. don’t have energy distributed in a way that looks
like a fragmenting parton). Discriminants:
> (E7)max/(ET)avg in jet (e.g. ATLAS calorimeter jets)
> %7 (nucl-ex/0810.1219)
» Cacciari/Salam (Cacciari & Salam, Phys. Lett. B 659,
119, 2008)

» In PHENIX: g, (nucl-ex/0907.4725)
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8-, discriminant method (13/ 40)

> Reject jets that don’t have a Gaussian distribution of O\ Perepelitsa

energy around the core.

Bon(m @)= Y (pr)iexp (—(A7 + A¢?)/203;)

i€fragment
» Choose Odis < Orec- Fake Jets
< 2.5
< PHENIX Preliminary . g >49(GeV/c}
2 Run-5 Cu + Cu 0-20% 21 75 Gev/er
Z 2l \su=200GeV/c o g >75(GeVicy

Gaussian filter,c = 0.3 g - g >115(GeV/c}
75<p, e < 11.5GeV/c %

0.1

g >17.8(GeV/c}
1

. g >274(GeV/c}
01

» Data-driven approach to determine where to cut.
» Cut efficiency saturates quickly with pr.



8-, method example
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9.6 GeV/ ¢ jet passing fake rejection Rejected 10.8 GeV/ ¢ background fluctuation
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Energy Scales in Reconstruction (15/ 40)
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PYTHIA

PYTHIA
hadron scale hadron scale

unfolding
Monte Carlo from MC
unfolding

from MC Energy Scale

+ embedding

MC +

pp recon-
structed scale background

unfolding
from embedding

d+A, A+A
measured scale

embedding

d+A, A+A
measured scale

» We talk about jet reconstruction at a given energy scale.

» Would like to make a “detector free” measurement and
correct for all detector effects.
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Jet pr transfer matrices (16/ 40)

o - o1 .
N 24 D.V. Perepelitsa
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» Smearing of a power law spectrum:
» small fluctuations from low to high pr get exponentially VTX
magnified e
» in PHENIX, dominated by missing n, KE energy
» Can perform a bin-by-bin (“Oth order unfolding™) by
just looking at the spectra before and after.

» Dangerous: assumes you know the shape of your input
spectrum (but most analyses do it this way)
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Jet spectrum unfolding (17/ 40)
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» Need to invert the spectrum smearing:

dN :/d t_lguth dN rcch
dpyzle_;c dpt%«uth trut

» For near-diagonal matrices (e.g. ppdA" — ppPP—rec
unfolding), can use a Neumann series: Energy Scale

+o00o
Unin—T)H=>_T"
n=0

» Best (and hardest solution) is to use singular value
decomposition (SVD) methods with some regularization
(hep-ph/9509307)

» implemented in the GURU software package
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Triggering, Tracking, Acceptance, etc. (15 40)
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many other issues!

» PHENIX Electromagnetic/RICH trigger (ERT):

» Fires on electromagnetic showers with 2 1.6-2 GeV.

» Use event trigger bits in large minimum bias sample to

construct a (centrality-dependent) efficiency. o

» Fake high-pr tracks from drift chamber conversions:

» Require 3+ constituents in jet.

» Cut out highly charged jets and those dominated by a
single high-pr track.

» Fiducial effects:

» Require jets to be within An, A¢ < 0.05 within the
edge of acceptance.

» Evaluate detector edge effects on reconstruction.



Overview of PHENIX Jet Results oo
D.V. Perepelitsa
» p+p © 200 GeV (PHENIX Run 5):

» Jet yields, fragmentation function D(z) for charged and
neutrals
» Demonstrate Gaussian filter reconstruction capability.

» d+Au @ 200 GeV (PHENIX Run 8):

> Jet yields, Rep, di-jet A¢ and poydistributions Results
» Measure/constrain cold nuclear matter effects on
suppression and kr broadening

» Cu+Cu @ 200 GeV (PHENIX Run 5):

> Jet yields, Raa, di-jet A¢ distributions
» Measure high-pr parton suppression in hot nuclear
matter



PHENIX p+p: yields
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» Unfolded back to the ideal hadron stage pr

» PHENIX can perform reconstruction out past pp ~ 60

GeV/c.

> Residual difference from theory could be related to jet

definitions.
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PHENIX p+p: fragmentation function (21 40)

D.V. Perepelitsa
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» n-Dimensional generalization to GURU used to unfold
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PHENIX d+Au: jet yields )

Anti-k; R=0.3 11.4 Gev
Anti-k; R=05
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» Cold nuclear matter effects are an important baseline in SPHENIX

understanding QGP energy loss / jet quenching.
» Testing the usability of the anti-kp algorithm
(hep-ph/0802.1189) at PHENIX. Two cone sizes:

» control for jet area.
» control for effect of underlying event.
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PHENIX d+Au: 2007 70 results 23/ 40)
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points indicate the normalization uncertainty due to the p+p
reference.

PRL 98 172302 2007



PHENIX d+Au: 2007 70 results e
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PHENIX d+Au: jet Rcp
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PHENIX d+Au: jet Rcp o 40y
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> At the pp reconstructed scale. ™
» Caveat: these are Rop, not Rgau.
» Evidence of cold nuclear matter effect:
» centrality-dependent nPDF modification (EMC region)?
> E-loss?
» Need Rya, and lower pr reach (and higher pr 7%'s) to

tell the whole story ... stay tuned.



PHENIX d+Au: di-jet pout a0
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» Search for broadening by examining e

Pout (: <kT>) = (pT)low -sin A¢

» With kinematic and away-side cuts to remove
combinatorial contribution, little room for
centrality-dependent broadening.

» = Investigate possible jT broadening in constituents?



PHENIX Cu+Cu: yields
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> Direct jet reconstruction in heavy ion collisions at RHIC.

» Plotted at the pp reconstructed scale.

» Not unfolded back to pfuth

yet.
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PHENIX Cu+Cu: Raa
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> At the pp reconstructed scale.
» Centrality-dependent suppression over a wide pr range.
» Extends and agrees with previous single leading hadron
measurement (7°).
» = Out of cone radiation or otherwise modified jet.
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PHENIX Cu+Cu: di-jet Ag o)
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> No centrality-dependent broadening observed within
sensitivity.



Jets in PHENIX
Outlook (31/ 40)
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Developing jet reconstruction techniques and making
PHENIX measurements!

» Gaussian filter gives reliable p+p results (and can
recover the fragmentation function).

» Measuring di-jet broadening and high-pt suppression in
cold nuclear matter ...
» ... and in hot nuclear matter!

Outlook

but there is much more to do.

Stay tuned!



Silicon Vertex Detector

Successfully commissioned
in 2011 p+p.

Taking data in Au+-Au right
now!

» Secondary vertex identification can tag heavy flavor jets.

» Improved tracking to reject background.

> Jet reconstruction with standalone tracking.

Jets in PHENIX
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Potential Future Upgrades: sPHENIX a0

EMCal + HCal(45%) + RMS,_ DAY [Rarepeliss

true p':'
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[LH X
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» Maintain and capitalize on PHENIX high rate capability
. . . VTX
(record lots of heavy ion data without rare triggers). SPHENIX

» Large, uniform acceptance. Hadronic calorimetry at
mid-rapidity (first at RHIC).

» Resolution and efficiency out to pr > 60 GeV/c.
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Jets in PHENIX

PHENIX Cu+Cu: yields at two energy scales (36 40)
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Misc. Gaussian filter backup slides
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Comparison with STAR d+Au
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Figure 5. Jet pp spectrum from d+Au collisions compared to scaled p+p spectrum [7]. Red box
indicates uncertainty of (Ny;,), black lines indicate JES uncertainty in d+Au and the magenta
box shows the total systematic uncertainty of p+p measurement (including JES uncertainty).
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PHENIX A¢ RMS, STAR poyt =
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Figure 3. Distributions of kp,a for p+p, d+Au

(10 < proo < 20 GeV/e).

Jets in PHENIX
(40/ 40)

D.V. Perepelitsa

Backup



	Introduction
	PHENIX Detector
	Basic Cuts

	Algorithms
	Gaussian Filter

	Heavy Ion Jets
	Underlying Event
	Fake Jets
	Energy Scale
	Misc.

	Results
	pp
	d+Au
	Cu+Cu

	Outlook
	VTX
	sPHENIX

	Acknowledgements
	Backup

